CF1768A.Greatest Convex

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an integer kk . Find the largest integer xx , where 1x<k1 \le x < k , such that x!+(x1)!x! + (x - 1)!^\dagger is a multiple of ^\ddagger kk , or determine that no such xx exists.

^\dagger y!y! denotes the factorial of yy , which is defined recursively as y!=y(y1)!y! = y \cdot (y-1)! for y1y \geq 1 with the base case of 0!=10! = 1 . For example, 5!=543210!=1205! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0! = 120 .

^\ddagger If aa and bb are integers, then aa is a multiple of bb if there exists an integer cc such that a=bca = b \cdot c . For example, 1010 is a multiple of 55 but 99 is not a multiple of 66 .

输入格式

The first line contains a single integer tt ( 1t1041 \le t \le 10^4 ) — the number of test cases. The description of test cases follows.

The only line of each test case contains a single integer kk ( 2k1092 \le k \le 10^9 ).

输出格式

For each test case output a single integer — the largest possible integer xx that satisfies the conditions above.

If no such xx exists, output 1-1 .

输入输出样例

  • 输入#1

    4
    3
    6
    8
    10

    输出#1

    2
    5
    7
    9

说明/提示

In the first test case, 2!+1!=2+1=32! + 1! = 2 + 1 = 3 , which is a multiple of 33 .

In the third test case, 7!+6!=5040+720=57607! + 6! = 5040 + 720 = 5760 , which is a multiple of 88 .

首页