A40.Emiya 家今天的饭

提高+/省选-

CSP-S

通过率:0%

时间限制:1.00s

内存限制:128MB

题目描述

Emiya 是个擅长做菜的高中生,他共掌握 nn烹饪方法,且会使用 mm主要食材做菜。为了方便叙述,我们对烹饪方法从 1n1 \sim n 编号,对主要食材从 1m1 \sim m 编号。

Emiya 做的每道菜都将使用恰好一种烹饪方法与恰好一种主要食材。更具体地,Emiya 会做 ai,ja_{i,j} 道不同的使用烹饪方法 ii 和主要食材 jj 的菜(1in,1jm1 \leq i \leq n, 1 \leq j \leq m),这也意味着 Emiya 总共会做 i=1nj=1mai,j\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} a_{i,j} 道不同的菜。

Emiya 今天要准备一桌饭招待 Yazid 和 Rin 这对好朋友,然而三个人对菜的搭配有不同的要求,更具体地,对于一种包含 kk 道菜的搭配方案而言:

  • Emiya 不会让大家饿肚子,所以将做至少一道菜,即 k1k \geq 1
  • Rin 希望品尝不同烹饪方法做出的菜,因此她要求每道菜的烹饪方法互不相同
  • Yazid 不希望品尝太多同一食材做出的菜,因此他要求每种主要食材至多在一半的菜(即 k2\lfloor \frac{k}{2} \rfloor 道菜)中被使用

这里的 x\lfloor x \rfloor 为下取整函数,表示不超过 xx 的最大整数。

这些要求难不倒 Emiya,但他想知道共有多少种不同的符合要求的搭配方案。两种方案不同,当且仅当存在至少一道菜在一种方案中出现,而不在另一种方案中出现。

Emiya 找到了你,请你帮他计算,你只需要告诉他符合所有要求的搭配方案数对质数 998,244,353998,244,353 取模的结果。

输入格式

第 1 行两个用单个空格隔开的整数 n,mn,m

第 2 行至第 n+1n + 1 行,每行 mm 个用单个空格隔开的整数,其中第 i+1i + 1 行的 mm 个数依次为 ai,1,ai,2,,ai,ma_{i,1}, a_{i,2}, \cdots, a_{i,m}

输出格式

仅一行一个整数,表示所求方案数对 998,244,353998,244,353 取模的结果。

输入输出样例

  • 输入#1

    2 3 
    1 0 1
    0 1 1

    输出#1

    3
  • 输入#2

    3 3
    1 2 3
    4 5 0
    6 0 0

    输出#2

    190
  • 输入#3

    5 5
    1 0 0 1 1
    0 1 0 1 0
    1 1 1 1 0
    1 0 1 0 1
    0 1 1 0 1

    输出#3

    742

说明/提示

【样例 1 解释】

由于在这个样例中,对于每组 i,ji, j,Emiya 都最多只会做一道菜,因此我们直接通过给出烹饪方法、主要食材的编号来描述一道菜。

符合要求的方案包括:

  • 做一道用烹饪方法 1、主要食材 1 的菜和一道用烹饪方法 2、主要食材 2 的菜
  • 做一道用烹饪方法 1、主要食材 1 的菜和一道用烹饪方法 2、主要食材 3 的菜
  • 做一道用烹饪方法 1、主要食材 3 的菜和一道用烹饪方法 2、主要食材 2 的菜

因此输出结果为 33 modmod 998,244,353998,244,353 = 33。 需要注意的是,所有只包含一道菜的方案都是不符合要求的,因为唯一的主要食材在超过一半的菜中出现,这不满足 Yazid 的要求。

【样例 2 解释】

Emiya 必须至少做 2 道菜。

做 2 道菜的符合要求的方案数为 100。

做 3 道菜的符合要求的方案数为 90。

因此符合要求的方案数为 100 + 90 = 190。

【数据范围】

测试点编号 n=n= m=m= ai,j<a_{i,j}< 测试点编号 n=n= m=m= ai,j<a_{i,j}<
11 22 22 22 77 1010 22 10310^3
22 22 33 22 88 1010 33 10310^3
33 55 22 22 9129\sim 12 4040 22 10310^3
44 55 33 22 131613\sim 16 4040 33 10310^3
55 1010 22 22 172117\sim 21 4040 500500 10310^3
66 1010 33 22 222522\sim 25 100100 2×1032\times 10^3 998244353998244353

对于所有测试点,保证 1n1001 \leq n \leq 1001m20001 \leq m \leq 20000ai,j<998,244,3530 \leq a_{i,j} \lt 998,244,353

首页