A22737.Cantor表(升级版)

普及-

通过率:0%

时间限制:1.00s

内存限制:128MB

题目描述

现代数学的著名证明之一是 Georg Cantor 证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

1/11/21/31/41/52/12/22/32/43/13/23/34/14/25/1\begin{matrix} 1/1 & 1/2 & 1/3 & 1/4 & 1/5 & \cdots \cr 2/1 & 2/2 & 2/3 & 2/4 & \cdots \cr 3/1 & 3/2 & 3/3 & \cdots \cr 4/1 & 4/2 & \cdots \cr 5/1 & \cdots \cr \end{matrix}

这次与 NOIp1999 第一题不同的是:这次需输入两个分数(不一定是最简分数),算出这两个分数的积(注意需要约分至最简分数),输出积在原表的第几列第几行(若积形如 aa(即结果为整数)或者 1/a1/a,则看作表内的 a/1a/11/a1/a 结算)。

输入格式

共两行。每行输入一个分数(不一定是最简分数)。

输出格式

两个整数,表示输入的两个分数的积在表中的第几列第几行。

输入输出样例

  • 输入#1

    4/5
    5/4

    输出#1

    1 1

说明/提示

数据范围

对于全部数据,两个分数的分母和分子均小于 10410^4

首页