CF1909B.Make Almost Equal With Mod

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

xi - Solar Storm

You are given an array a1,a2,,ana_1, a_2, \dots, a_n of distinct positive integers. You have to do the following operation exactly once:

  • choose a positive integer kk ;
  • for each ii from 11 to nn , replace aia_i with ai mod ka_i \text{ mod } k^\dagger .

Find a value of kk such that 1k10181 \leq k \leq 10^{18} and the array a1,a2,,ana_1, a_2, \dots, a_n contains exactly 22 distinct values at the end of the operation. It can be shown that, under the constraints of the problem, at least one such kk always exists. If there are multiple solutions, you can print any of them.

^\dagger a mod ba \text{ mod } b denotes the remainder after dividing aa by bb . For example:

  • 7 mod 3=17 \text{ mod } 3=1 since 7=32+17 = 3 \cdot 2 + 1
  • 15 mod 4=315 \text{ mod } 4=3 since 15=43+315 = 4 \cdot 3 + 3
  • 21 mod 1=021 \text{ mod } 1=0 since 21=211+021 = 21 \cdot 1 + 0

输入格式

Each test contains multiple test cases. The first line contains the number of test cases tt ( 1t5001 \le t \le 500 ). The description of the test cases follows.

The first line of each test case contains a single integer nn ( 2n1002 \le n \le 100 ) — the length of the array aa .

The second line of each test case contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n ( 1ai10171 \le a_i \le 10^{17} ) — the initial state of the array. It is guaranteed that all the aia_i are distinct.

Note that there are no constraints on the sum of nn over all test cases.

输出格式

For each test case, output a single integer: a value of kk ( 1k10181 \leq k \leq 10^{18} ) such that the array a1,a2,,ana_1, a_2, \dots, a_n contains exactly 22 distinct values at the end of the operation.

输入输出样例

  • 输入#1

    5
    4
    8 15 22 30
    5
    60 90 98 120 308
    6
    328 769 541 986 215 734
    5
    1000 2000 7000 11000 16000
    2
    2 1

    输出#1

    7
    30
    3
    5000
    1000000000000000000

说明/提示

In the first test case, you can choose k=7k = 7 . The array becomes [8 mod 7,15 mod 7,22 mod 7,30 mod 7]=[1,1,1,2][8 \text{ mod } 7, 15 \text{ mod } 7, 22 \text{ mod } 7, 30 \text{ mod } 7] = [1, 1, 1, 2] , which contains exactly 22 distinct values ( {1,2}\{1, 2\} ).

In the second test case, you can choose k=30k = 30 . The array becomes [0,0,8,0,8][0, 0, 8, 0, 8] , which contains exactly 22 distinct values ( {0,8}\{0, 8\} ). Note that choosing k=10k = 10 would also be a valid solution.

In the last test case, you can choose k=1018k = 10^{18} . The array becomes [2,1][2, 1] , which contains exactly 22 distinct values ( {1,2}\{1, 2\} ). Note that choosing k=1018+1k = 10^{18} + 1 would not be valid, because 1k10181 \leq k \leq 10^{18} must be true.

首页