CF1918C.XOR-distance

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given integers aa , bb , rr . Find the smallest value of (ax)(bx)|({a \oplus x}) - ({b \oplus x})| among all 0xr0 \leq x \leq r .

\oplus is the operation of bitwise XOR, and y|y| is absolute value of yy .

输入格式

The first line contains a single integer tt ( 1t1041 \le t \le 10^4 ) — the number of test cases.

Each test case contains integers aa , bb , rr ( 0a,b,r10180 \le a, b, r \le 10^{18} ).

输出格式

For each test case, output a single number — the smallest possible value.

输入输出样例

  • 输入#1

    10
    4 6 0
    0 3 2
    9 6 10
    92 256 23
    165 839 201
    1 14 5
    2 7 2
    96549 34359 13851
    853686404475946 283666553522252166 127929199446003072
    735268590557942972 916721749674600979 895150420120690183

    输出#1

    2
    1
    1
    164
    542
    5
    3
    37102
    27934920819538516
    104449824168870225

说明/提示

In the first test, when r=0r = 0 , then xx is definitely equal to 00 , so the answer is 4060=46=2|{4 \oplus 0} - {6 \oplus 0}| = |4 - 6| = 2 .

In the second test:

  • When x=0x = 0 , 0030=03=3|{0 \oplus 0} - {3 \oplus 0}| = |0 - 3| = 3 .
  • When x=1x = 1 , 0131=12=1|{0 \oplus 1} - {3 \oplus 1}| = |1 - 2| = 1 .
  • When x=2x = 2 , 0232=21=1|{0 \oplus 2} - {3 \oplus 2}| = |2 - 1| = 1 .

Therefore, the answer is 11 .

In the third test, the minimum is achieved when x=1x = 1 .

首页