CF1893B.Neutral Tonality

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an array aa consisting of nn integers, as well as an array bb consisting of mm integers.

Let LIS(c)\text{LIS}(c) denote the length of the longest increasing subsequence of array cc . For example, LIS([2,1,1,3])\text{LIS}([2, \underline{1}, 1, \underline{3}]) = 22 , LIS([1,7,9])\text{LIS}([\underline{1}, \underline{7}, \underline{9}]) = 33 , LIS([3,1,2,4])\text{LIS}([3, \underline{1}, \underline{2}, \underline{4}]) = 33 .

You need to insert the numbers b1,b2,,bmb_1, b_2, \ldots, b_m into the array aa , at any positions, in any order. Let the resulting array be c1,c2,,cn+mc_1, c_2, \ldots, c_{n+m} . You need to choose the positions for insertion in order to minimize LIS(c)\text{LIS}(c) .

Formally, you need to find an array c1,c2,,cn+mc_1, c_2, \ldots, c_{n+m} that simultaneously satisfies the following conditions:

  • The array a1,a2,,ana_1, a_2, \ldots, a_n is a subsequence of the array c1,c2,,cn+mc_1, c_2, \ldots, c_{n+m} .
  • The array c1,c2,,cn+mc_1, c_2, \ldots, c_{n+m} consists of the numbers a1,a2,,an,b1,b2,,bma_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_m , possibly rearranged.
  • The value of LIS(c)\text{LIS}(c) is the minimum possible among all suitable arrays cc .

输入格式

Each test contains multiple test cases. The first line contains a single integer tt (1t104)(1 \leq t \leq 10^4) — the number of test cases. The description of the test cases follows.

The first line of each test case contains two integers n,mn, m (1n2105,1m2105)(1 \leq n \leq 2 \cdot 10^5, 1 \leq m \leq 2 \cdot 10^5) — the length of array aa and the length of array bb .

The second line of each test case contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n (1ai109)(1 \leq a_i \leq 10^9) — the elements of the array aa .

The third line of each test case contains mm integers b1,b2,,bmb_1, b_2, \ldots, b_m (1bi109)(1 \leq b_i \leq 10^9) — the elements of the array bb .

It is guaranteed that the sum of nn over all test cases does not exceed 21052\cdot 10^5 , and the sum of mm over all test cases does not exceed 21052\cdot 10^5 .

输出格式

For each test case, output n+mn + m numbers — the elements of the final array c1,c2,,cn+mc_1, c_2, \ldots, c_{n+m} , obtained after the insertion, such that the value of LIS(c)\text{LIS}(c) is minimized. If there are several answers, you can output any of them.

输入输出样例

  • 输入#1

    7
    2 1
    6 4
    5
    5 5
    1 7 2 4 5
    5 4 1 2 7
    1 9
    7
    1 2 3 4 5 6 7 8 9
    3 2
    1 3 5
    2 4
    10 5
    1 9 2 3 8 1 4 7 2 9
    7 8 5 4 6
    2 1
    2 2
    1
    6 1
    1 1 1 1 1 1
    777

    输出#1

    6 5 4
    1 1 7 7 2 2 4 4 5 5
    9 8 7 7 6 5 4 3 2 1
    1 3 5 2 4
    1 9 2 3 8 8 1 4 4 7 7 2 9 6 5
    2 2 1
    777 1 1 1 1 1 1

说明/提示

In the first test case, LIS(a)=LIS([6,4])=1\text{LIS}(a) = \text{LIS}([6, 4]) = 1 . We can insert the number 55 between 66 and 44 , then LIS(c)=LIS([6,5,4])=1\text{LIS}(c) = \text{LIS}([6, 5, 4]) = 1 .

In the second test case, LIS([1,7,2,4,5])\text{LIS}([\underline{1}, 7, \underline{2}, \underline{4}, \underline{5}]) = 44 . After the insertion, c=[1,1,7,7,2,2,4,4,5,5]c = [1, 1, 7, 7, 2, 2, 4, 4, 5, 5] . It is easy to see that LIS(c)=4\text{LIS}(c) = 4 . It can be shown that it is impossible to achieve LIS(c)\text{LIS}(c) less than 44 .

首页