CF1900D.Small GCD
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
Let a , b , and c be integers. We define function f(a,b,c) as follows:
Order the numbers a , b , c in such a way that a≤b≤c . Then return gcd(a,b) , where gcd(a,b) denotes the greatest common divisor (GCD) of integers a and b .
So basically, we take the gcd of the 2 smaller values and ignore the biggest one.
You are given an array a of n elements. Compute the sum of f(ai,aj,ak) for each i , j , k , such that 1≤i<j<k≤n .
More formally, compute $$$$\sum_{i = 1}^n \sum_{j = i+1}^n \sum_{k =j +1}^n f(a_i, a_j, a_k). $$$$
输入格式
Each test contains multiple test cases. The first line contains the number of test cases t ( 1≤t≤10 ). The description of the test cases follows.
The first line of each test case contains a single integer n ( 3≤n≤8⋅104 ) — length of the array a .
The second line of each test case contains n integers, a1,a2,…,an ( 1≤ai≤105 ) — elements of the array a .
It is guaranteed that the sum of n over all test cases does not exceed 8⋅104 .
输出格式
For each test case, output a single number — the sum from the problem statement.
输入输出样例
输入#1
2 5 2 3 6 12 17 8 6 12 8 10 15 12 18 16
输出#1
24 203
说明/提示
In the first test case, the values of f are as follows:
- i=1 , j=2 , k=3 , f(ai,aj,ak)=f(2,3,6)=gcd(2,3)=1 ;
- i=1 , j=2 , k=4 , f(ai,aj,ak)=f(2,3,12)=gcd(2,3)=1 ;
- i=1 , j=2 , k=5 , f(ai,aj,ak)=f(2,3,17)=gcd(2,3)=1 ;
- i=1 , j=3 , k=4 , f(ai,aj,ak)=f(2,6,12)=gcd(2,6)=2 ;
- i=1 , j=3 , k=5 , f(ai,aj,ak)=f(2,6,17)=gcd(2,6)=2 ;
- i=1 , j=4 , k=5 , f(ai,aj,ak)=f(2,12,17)=gcd(2,12)=2 ;
- i=2 , j=3 , k=4 , f(ai,aj,ak)=f(3,6,12)=gcd(3,6)=3 ;
- i=2 , j=3 , k=5 , f(ai,aj,ak)=f(3,6,17)=gcd(3,6)=3 ;
- i=2 , j=4 , k=5 , f(ai,aj,ak)=f(3,12,17)=gcd(3,12)=3 ;
- i=3 , j=4 , k=5 , f(ai,aj,ak)=f(6,12,17)=gcd(6,12)=6 .
The sum over all triples is 1+1+1+2+2+2+3+3+3+6=24 .In the second test case, there are 56 ways to choose values of i , j , k . The sum over all f(ai,aj,ak) is 203 .