CF1872C.Non-coprime Split

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given two integers lrl \le r . You need to find positive integers aa and bb such that the following conditions are simultaneously satisfied:

  • la+brl \le a + b \le r
  • gcd(a,b)1\gcd(a, b) \neq 1

or report that they do not exist.

gcd(a,b)\gcd(a, b) denotes the greatest common divisor of numbers aa and bb . For example, gcd(6,9)=3\gcd(6, 9) = 3 , gcd(8,9)=1\gcd(8, 9) = 1 , gcd(4,2)=2\gcd(4, 2) = 2 .

输入格式

The first line of the input contains an integer tt ( 1t5001 \le t \le 500 ) — the number of test cases.

Then the descriptions of the test cases follow.

The only line of the description of each test case contains 22 integers l,rl, r ( 1lr1071 \le l \le r \le 10^7 ).

输出格式

For each test case, output the integers a,ba, b that satisfy all the conditions on a separate line. If there is no answer, instead output a single number 1-1 .

If there are multiple answers, you can output any of them.

输入输出样例

  • 输入#1

    11
    11 15
    1 3
    18 19
    41 43
    777 777
    8000000 10000000
    2000 2023
    1791791 1791791
    1 4
    2 3
    9840769 9840769

    输出#1

    6 9
    -1
    14 4
    36 6
    111 666
    4000000 5000000 
    2009 7
    -1
    2 2
    -1
    6274 9834495

说明/提示

In the first test case, 116+91511 \le 6 + 9 \le 15 , gcd(6,9)=3\gcd(6, 9) = 3 , and all conditions are satisfied. Note that this is not the only possible answer, for example, {4,10},{5,10},{6,6}\{4, 10\}, \{5, 10\}, \{6, 6\} are also valid answers for this test case.

In the second test case, the only pairs {a,b}\{a, b\} that satisfy the condition 1a+b31 \le a + b \le 3 are {1,1},{1,2},{2,1}\{1, 1\}, \{1, 2\}, \{2, 1\} , but in each of these pairs gcd(a,b)\gcd(a, b) equals 11 , so there is no answer.

In the third sample test, gcd(14,4)=2\gcd(14, 4) = 2 .

首页