CF1872D.Plus Minus Permutation
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given 3 integers — n , x , y . Let's call the score of a permutation † p1,…,pn the following value:
$$(p_{1 \cdot x} + p_{2 \cdot x} + \ldots + p_{\lfloor \frac{n}{x} \rfloor \cdot x}) - (p_{1 \cdot y} + p_{2 \cdot y} + \ldots + p_{\lfloor \frac{n}{y} \rfloor \cdot y}) $$ </span></p><p>In other words, the <span class="tex-font-style-it">score</span> of a permutation is the sum of $p\_i$ for all indices $i$ divisible by $x$ , minus the sum of $p\_i$ for all indices $i$ divisible by $y$ .</p><p>You need to find the maximum possible <span class="tex-font-style-it">score</span> among all permutations of length $n$ .</p><p>For example, if $n = 7$ , $x = 2$ , $y = 3$ , the maximum <span class="tex-font-style-it">score</span> is achieved by the permutation $\[2,\\color{red}{\\underline{\\color{black}{6}}},\\color{blue}{\\underline{\\color{black}{1}}},\\color{red}{\\underline{\\color{black}{7}}},5,\\color{blue}{\\underline{\\color{red}{\\underline{\\color{black}{4}}}}},3\]$ and is equal to $(6 + 7 + 4) - (1 + 4) = 17 - 5 = 12$ .</p><p> $^\\dagger$ A permutation of length $n$ is an array consisting of $n$ distinct integers from $1$ to $n$ in any order. For example, $\[2,3,1,5,4\]$ is a permutation, but $\[1,2,2\]$ is not a permutation (the number $2$ appears twice in the array) and $\[1,3,4\]$ is also not a permutation ( $n=3$ , but the array contains $4$$$).输入格式
The first line of input contains an integer t ( 1≤t≤104 ) — the number of test cases.
Then follows the description of each test case.
The only line of each test case description contains 3 integers n , x , y ( 1≤n≤109 , 1≤x,y≤n ).
输出格式
For each test case, output a single integer — the maximum score among all permutations of length n .
输入输出样例
输入#1
8 7 2 3 12 6 3 9 1 9 2 2 2 100 20 50 24 4 6 1000000000 5575 25450 4 4 1
输出#1
12 -3 44 0 393 87 179179179436104 -6
说明/提示
The first test case is explained in the problem statement above.
In the second test case, one of the optimal permutations will be [12,11,2,4,8,9,10,6,1,5,3,7] . The score of this permutation is (9+7)−(2+9+1+7)=−3 . It can be shown that a score greater than −3 can not be achieved. Note that the answer to the problem can be negative.
In the third test case, the score of the permutation will be (p1+p2+…+p9)−p9 . One of the optimal permutations for this case is [9,8,7,6,5,4,3,2,1] , and its score is 44 . It can be shown that a score greater than 44 can not be achieved.
In the fourth test case, x=y , so the score of any permutation will be 0 .