CF1872D.Plus Minus Permutation

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given 33 integers — nn , xx , yy . Let's call the score of a permutation ^\dagger p1,,pnp_1, \ldots, p_n the following value:

$$(p_{1 \cdot x} + p_{2 \cdot x} + \ldots + p_{\lfloor \frac{n}{x} \rfloor \cdot x}) - (p_{1 \cdot y} + p_{2 \cdot y} + \ldots + p_{\lfloor \frac{n}{y} \rfloor \cdot y}) $$ </span></p><p>In other words, the <span class="tex-font-style-it">score</span> of a permutation is the sum of $p\_i$ for all indices $i$ divisible by $x$ , minus the sum of $p\_i$ for all indices $i$ divisible by $y$ .</p><p>You need to find the maximum possible <span class="tex-font-style-it">score</span> among all permutations of length $n$ .</p><p>For example, if $n = 7$ , $x = 2$ , $y = 3$ , the maximum <span class="tex-font-style-it">score</span> is achieved by the permutation $\[2,\\color{red}{\\underline{\\color{black}{6}}},\\color{blue}{\\underline{\\color{black}{1}}},\\color{red}{\\underline{\\color{black}{7}}},5,\\color{blue}{\\underline{\\color{red}{\\underline{\\color{black}{4}}}}},3\]$ and is equal to $(6 + 7 + 4) - (1 + 4) = 17 - 5 = 12$ .</p><p> $^\\dagger$ A permutation of length $n$ is an array consisting of $n$ distinct integers from $1$ to $n$ in any order. For example, $\[2,3,1,5,4\]$ is a permutation, but $\[1,2,2\]$ is not a permutation (the number $2$ appears twice in the array) and $\[1,3,4\]$ is also not a permutation ( $n=3$ , but the array contains $4$$$).

输入格式

The first line of input contains an integer tt ( 1t1041 \le t \le 10^4 ) — the number of test cases.

Then follows the description of each test case.

The only line of each test case description contains 33 integers nn , xx , yy ( 1n1091 \le n \le 10^9 , 1x,yn1 \le x, y \le n ).

输出格式

For each test case, output a single integer — the maximum score among all permutations of length nn .

输入输出样例

  • 输入#1

    8
    7 2 3
    12 6 3
    9 1 9
    2 2 2
    100 20 50
    24 4 6
    1000000000 5575 25450
    4 4 1

    输出#1

    12
    -3
    44
    0
    393
    87
    179179179436104
    -6

说明/提示

The first test case is explained in the problem statement above.

In the second test case, one of the optimal permutations will be [12,11,2,4,8,9,10,6,1,5,3,7][12,11,\color{blue}{\underline{\color{black}{2}}},4,8,\color{blue}{\underline{\color{red}{\underline{\color{black}{9}}}}},10,6,\color{blue}{\underline{\color{black}{1}}},5,3,\color{blue}{\underline{\color{red}{\underline{\color{black}{7}}}}}] . The score of this permutation is (9+7)(2+9+1+7)=3(9 + 7) - (2 + 9 + 1 + 7) = -3 . It can be shown that a score greater than 3-3 can not be achieved. Note that the answer to the problem can be negative.

In the third test case, the score of the permutation will be (p1+p2++p9)p9(p_1 + p_2 + \ldots + p_9) - p_9 . One of the optimal permutations for this case is [9,8,7,6,5,4,3,2,1][9, 8, 7, 6, 5, 4, 3, 2, 1] , and its score is 4444 . It can be shown that a score greater than 4444 can not be achieved.

In the fourth test case, x=yx = y , so the score of any permutation will be 00 .

首页