CF1856C.To Become Max

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an array of integers aa of length nn .

In one operation you:

  • Choose an index ii such that 1in11 \le i \le n - 1 and aiai+1a_i \le a_{i + 1} .
  • Increase aia_i by 11 .

Find the maximum possible value of max(a1,a2,an)\max(a_1, a_2, \ldots a_n) that you can get after performing this operation at most kk times.

输入格式

Each test contains multiple test cases. The first line of input contains a single integer tt ( 1t1001 \le t \le 100 ) — the number of test cases. The description of the test cases follows.

The first line of each test case contains two integers nn and kk ( 2n10002 \le n \le 1000 , 1k1081 \le k \le 10^{8} ) — the length of the array aa and the maximum number of operations that can be performed.

The second line of each test case contains nn integers a1,a2,,ana_1,a_2,\ldots,a_n ( 1ai1081 \le a_i \le 10^{8} ) — the elements of the array aa .

It is guaranteed that the sum of nn over all test cases does not exceed 10001000 .

输出格式

For each test case output a single integer — the maximum possible maximum of the array after performing at most kk operations.

输入输出样例

  • 输入#1

    6
    3 4
    1 3 3
    5 6
    1 3 4 5 1
    4 13
    1 1 3 179
    5 3
    4 3 2 2 2
    5 6
    6 5 4 1 5
    2 17
    3 5

    输出#1

    4
    7
    179
    5
    7
    6

说明/提示

In the first test case, one possible optimal sequence of operations is: [1,3,3][2,3,3][2,4,3][3,4,3][4,4,3][\textcolor{red}{1}, 3, 3] \rightarrow [2, \textcolor{red}{3}, 3] \rightarrow [\textcolor{red}{2}, 4, 3] \rightarrow [\textcolor{red}{3}, 4, 3] \rightarrow [4, 4, 3].

In the second test case, one possible optimal sequence of operations is: [1,3,4,5,1][1,4,4,5,1][1,5,4,5,1][1,5,5,5,1][1,5,6,5,1][1,6,6,5,1][1,7,6,5,1][1, \textcolor{red}{3}, 4, 5, 1] \rightarrow [1, \textcolor{red}{4}, 4, 5, 1] \rightarrow [1, 5, \textcolor{red}{4}, 5, 1] \rightarrow [1, 5, \textcolor{red}{5}, 5, 1] \rightarrow [1, \textcolor{red}{5}, 6, 5, 1] \rightarrow [1, \textcolor{red}{6}, 6, 5, 1] \rightarrow [1, 7, 6, 5, 1].

首页