CF1864H.Asterism Stream

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Bogocubic is playing a game with amenotiomoi. First, Bogocubic fixed an integer nn , and then he gave amenotiomoi an integer xx which is initially equal to 11 .

In one move amenotiomoi performs one of the following operations with the same probability:

  • increase xx by 11 ;
  • multiply xx by 22 .

Bogocubic wants to find the expected number of moves amenotiomoi has to do to make xx greater than or equal to nn . Help him find this number modulo 998244353998\,244\,353 .

Formally, let M=998244353M = 998\,244\,353 . It can be shown that the answer can be expressed as an irreducible fraction pq\frac{p}{q} , where pp and qq are integers and q≢0(modM)q \not \equiv 0 \pmod{M} . Output the integer equal to pq1modMp \cdot q^{-1} \bmod M . In other words, output such an integer yy that 0y<M0 \le y < M and yqp(modM)y \cdot q \equiv p \pmod{M} .

输入格式

Each test contains multiple test cases. The first line contains the number of test cases tt ( 1t1001 \le t \le 100 ). The description of the test cases follows.

The only line of each test case contains one integer nn ( 1n10181 \le n \le 10^{18} ).

输出格式

For each test case, output a single integer — the expected number of moves modulo 998244353998\,244\,353 .

输入输出样例

  • 输入#1

    7
    1
    4
    8
    15
    998244353
    296574916252563317
    494288321850420024

    输出#1

    0
    499122179
    717488133
    900515847
    93715054
    44488799
    520723508

说明/提示

In the first test case, nxn\le x without any operations, so the answer is 00 .

In the second test case, for n=4n = 4 , here is the list of all possible sequences of operations and their probabilities:

  • 1+12+13+141\stackrel{+1}{\longrightarrow}2\stackrel{+1}{\longrightarrow}3\stackrel{+1}{\longrightarrow}4 , the probability is 18\frac{1}{8} ;
  • 1×22+13+141\stackrel{\times 2}{\longrightarrow}2\stackrel{+1}{\longrightarrow}3\stackrel{+1}{\longrightarrow}4 , the probability is 18\frac{1}{8} ;
  • 1+12+13×261\stackrel{+1}{\longrightarrow}2\stackrel{+1}{\longrightarrow}3\stackrel{\times 2}{\longrightarrow}6 , the probability is 18\frac{1}{8} ;
  • 1×22+13×261\stackrel{\times 2}{\longrightarrow}2\stackrel{+1}{\longrightarrow}3\stackrel{\times 2}{\longrightarrow}6 , the probability is 18\frac{1}{8} ;
  • 1+12×241\stackrel{+1}{\longrightarrow}2\stackrel{\times 2}{\longrightarrow}4 , the probability is 14\frac{1}{4} ;
  • 1×22×241\stackrel{\times 2}{\longrightarrow}2\stackrel{\times 2}{\longrightarrow}4 , the probability is 14\frac{1}{4} .

So the expected number of moves is 4(318)+2(214)=52499122179(mod998244353)4 \cdot \left(3 \cdot \frac{1}{8}\right) + 2 \cdot \left(2 \cdot \frac{1}{4} \right) =\frac{5}{2} \equiv 499122179 \pmod{998244353} .

In the third test case, for n=8n = 8 , the expected number of moves is 13732717488133(mod998244353)\frac{137}{32}\equiv 717488133\pmod{998244353} .

In the fourth test case, for n=15n = 15 , the expected number of moves is 249774096900515847(mod998244353)\frac{24977}{4096} \equiv 900515847 \pmod{998244353} .

首页