CF1844F1.Min Cost Permutation (Easy Version)

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

The only difference between this problem and the hard version is the constraints on tt and nn .

You are given an array of nn positive integers a1,,ana_1,\dots,a_n , and a (possibly negative) integer cc .

Across all permutations b1,,bnb_1,\dots,b_n of the array a1,,ana_1,\dots,a_n , consider the minimum possible value of $$$$\sum_{i=1}^{n-1} |b_{i+1}-b_i-c|. $$ Find the lexicographically smallest permutation bb of the array aa that achieves this minimum.

A sequence xx is lexicographically smaller than a sequence yy if and only if one of the following holds:

  • xx is a prefix of yy , but xneyx \\ne y ;
  • in the first position where xx and yy differ, the sequence xx has a smaller element than the corresponding element in yy$$.

输入格式

Each test contains multiple test cases. The first line contains the number of test cases tt ( 1t1031 \le t \le 10^3 ). The description of the test cases follows.

The first line of each test case contains two integers nn and cc ( 1n51031 \le n \le 5 \cdot 10^3 , 109c109-10^9 \le c \le 10^9 ).

The second line of each test case contains nn integers a1,,ana_1,\dots,a_n ( 1ai1091 \le a_i \le 10^9 ).

It is guaranteed that the sum of nn over all test cases does not exceed 51035 \cdot 10^3 .

输出格式

For each test case, output nn integers b1,,bnb_1,\dots,b_n , the lexicographically smallest permutation of aa that achieves the minimum i=1n1bi+1bic\sum\limits_{i=1}^{n-1} |b_{i+1}-b_i-c| .

输入输出样例

  • 输入#1

    3
    6 -7
    3 1 4 1 5 9
    3 2
    1 3 5
    1 2718
    2818

    输出#1

    9 3 1 4 5 1
    1 3 5
    2818

说明/提示

In the first test case, it can be proven that the minimum possible value of i=1n1bi+1bic\sum\limits_{i=1}^{n-1} |b_{i+1}-b_i-c| is 2727 , and the permutation b=[9,3,1,4,5,1]b = [9,3,1,4,5,1] is the lexicographically smallest permutation of aa that achieves this minimum: 39(7)+13(7)+41(7)+54(7)+15(7)=1+5+10+8+3=27|3-9-(-7)|+|1-3-(-7)|+|4-1-(-7)|+|5-4-(-7)|+|1-5-(-7)| = 1+5+10+8+3 = 27 .

In the second test case, the minimum possible value of i=1n1bi+1bic\sum\limits_{i=1}^{n-1} |b_{i+1}-b_i-c| is 00 , and b=[1,3,5]b = [1,3,5] is the lexicographically smallest permutation of aa that achieves this.

In the third test case, there is only one permutation bb .

首页