CF1844H.Multiple of Three Cycles

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

An array a1,,ana_1,\dots,a_n of length nn is initially all blank. There are nn updates where one entry of aa is updated to some number, such that aa becomes a permutation of 1,2,,n1,2,\dots,n after all the updates.

After each update, find the number of ways (modulo 998244353998\,244\,353 ) to fill in the remaining blank entries of aa so that aa becomes a permutation of 1,2,,n1,2,\dots,n and all cycle lengths in aa are multiples of 33 .

A permutation of 1,2,,n1,2,\dots,n is an array of length nn consisting of nn distinct integers from 11 to nn in arbitrary order. A cycle in a permutation aa is a sequence of pairwise distinct integers (i1,,ik)(i_1,\dots,i_k) such that i2=ai1,i3=ai2,,ik=aik1,i1=aiki_2 = a_{i_1},i_3 = a_{i_2},\dots,i_k = a_{i_{k-1}},i_1 = a_{i_k} . The length of this cycle is the number kk , which is a multiple of 33 if and only if k0(mod3)k \equiv 0 \pmod 3 .

输入格式

The first line contains a single integer nn ( 3n31053 \le n \le 3 \cdot 10^5 , n0(mod3)n \equiv 0 \pmod 3 ).

The ii -th of the next nn lines contains two integers xix_i and yiy_i , representing that the ii -th update changes axia_{x_i} to yiy_i .

It is guaranteed that x1,,xnx_1,\dots,x_n and y1,,yny_1,\dots,y_n are permutations of 1,2,,n1,2,\dots,n , i.e. aa becomes a permutation of 1,2,,n1,2,\dots,n after all the updates.

输出格式

Output nn lines: the number of ways (modulo 998244353998\,244\,353 ) after the first 1,2,,n1,2,\dots,n updates.

输入输出样例

  • 输入#1

    6
    3 2
    1 4
    4 5
    2 6
    5 1
    6 3

    输出#1

    32
    8
    3
    2
    1
    1
  • 输入#2

    3
    1 1
    2 3
    3 2

    输出#2

    0
    0
    0
  • 输入#3

    18
    1 2
    2 3
    3 4
    4 5
    5 6
    6 7
    7 8
    8 9
    9 10
    10 11
    11 12
    12 13
    13 14
    14 15
    15 16
    16 17
    17 18
    18 1

    输出#3

    671571067
    353924552
    521242461
    678960117
    896896000
    68992000
    6272000
    627200
    62720
    7840
    1120
    160
    32
    8
    2
    1
    1
    1

说明/提示

In the first sample, for example, after the 33 rd update the 33 ways to complete the permutation a=[4,_,2,5,_,_]a = [4,\_,2,5,\_,\_] are as follows:

  • [4,1,2,5,6,3][4,1,2,5,6,3] : The only cycle is (145632)(1\,4\,5\,6\,3\,2) , with length 66 .
  • [4,6,2,5,1,3][4,6,2,5,1,3] : The cycles are (145)(1\,4\,5) and (263)(2\,6\,3) , with lengths 33 and 33 .
  • [4,6,2,5,3,1][4,6,2,5,3,1] : The only cycle is (145326)(1\,4\,5\,3\,2\,6) , with length 66 .

In the second sample, the first update creates a cycle of length 11 , so there are no ways to make all cycle lengths a multiple of 33 .

首页