CF1822D.Super-Permutation

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

A permutation is a sequence nn integers, where each integer from 11 to nn appears exactly once. For example, [1][1] , [3,5,2,1,4][3,5,2,1,4] , [1,3,2][1,3,2] are permutations, while [2,3,2][2,3,2] , [4,3,1][4,3,1] , [0][0] are not.

Given a permutation aa , we construct an array bb , where bi=(a1+a2+  +ai)modnb_i = (a_1 + a_2 +~\dots~+ a_i) \bmod n .

A permutation of numbers [a1,a2,,an][a_1, a_2, \dots, a_n] is called a super-permutation if [b1+1,b2+1,,bn+1][b_1 + 1, b_2 + 1, \dots, b_n + 1] is also a permutation of length nn .

Grisha became interested whether a super-permutation of length nn exists. Help him solve this non-trivial problem. Output any super-permutation of length nn , if it exists. Otherwise, output 1-1 .

输入格式

The first line contains a single integer tt ( 1t1041 \le t \le 10^4 ) — the number of test cases. The description of the test cases follows.

Each test case consists of a single line containing one integer nn ( 1n21051 \le n \le 2 \cdot 10^5 ) — the length of the desired permutation.

The sum of nn over all test cases does not exceed 21052 \cdot 10^5 .

输出格式

For each test case, output in a separate line:

  • nn integers — a super-permutation of length nn , if it exists.
  • 1-1 , otherwise.

If there are several suitable permutations, output any of them.

输入输出样例

  • 输入#1

    4
    1
    2
    3
    6

    输出#1

    1
    2 1
    -1
    6 5 2 3 4 1
首页