CF1824D.LuoTianyi and the Function

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

LuoTianyi gives you an array aa of nn integers and the index begins from 11 .

Define g(i,j)g(i,j) as follows:

  • g(i,j)g(i,j) is the largest integer xx that satisfies {ap:ipj}{aq:xqj}\{a_p:i\le p\le j\}\subseteq\{a_q:x\le q\le j\} while iji \le j ;
  • and g(i,j)=0g(i,j)=0 while i>ji>j .

There are qq queries. For each query you are given four integers l,r,x,yl,r,x,y , you need to calculate i=lrj=xyg(i,j)\sum\limits_{i=l}^{r}\sum\limits_{j=x}^{y}g(i,j) .

输入格式

The first line contains two integers nn and qq ( 1n,q1061\le n,q\le 10^6 ) — the length of the array aa and the number of queries.

The second line contains nn integers a1,a2,,ana_1,a_2,\ldots,a_n ( 1ain1\le a_i\le n ) — the elements of the array aa .

Next qq lines describe a query. The ii -th line contains four integers l,r,x,yl,r,x,y ( 1lrn,1xyn1\le l\le r\le n, 1\le x\le y\le n ) — the integers in the ii -th query.

输出格式

Print qq lines where ii -th line contains one integer — the answer for the ii -th query.

输入输出样例

  • 输入#1

    6 4
    1 2 2 1 3 4
    1 1 4 5
    2 3 3 3
    3 6 1 2
    6 6 6 6

    输出#1

    6
    6
    0
    6
  • 输入#2

    10 5
    10 2 8 10 9 8 2 1 1 8
    1 1 10 10
    2 2 3 3
    6 6 6 6
    1 1 4 5
    4 8 4 8

    输出#2

    4
    2
    6
    4
    80

说明/提示

In the first example:

In the first query, the answer is g(1,4)+g(1,5)=3+3=6g(1,4)+g(1,5)=3+3=6 .

x=1,2,3x=1,2,3 can satisfies {ap:1p4}{aq:xq4}\{a_p:1\le p\le 4\}\subseteq\{a_q:x\le q\le 4\} , 33 is the largest integer so g(1,4)=3g(1,4)=3 .

In the second query, the answer is g(2,3)+g(3,3)=3+3=6g(2,3)+g(3,3)=3+3=6 .

In the third query, the answer is 00 , because all i>ji > j and g(i,j)=0g(i,j)=0 .

In the fourth query, the answer is g(6,6)=6g(6,6)=6 .

In the second example:

In the second query, the answer is g(2,3)=2g(2,3)=2 .

In the fourth query, the answer is g(1,4)+g(1,5)=2+2=4g(1,4)+g(1,5)=2+2=4 .

首页