CF372E.Drawing Circles is Fun
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
There are a set of points S on the plane. This set doesn't contain the origin O(0,0) , and for each two distinct points in the set A and B , the triangle OAB has strictly positive area.
Consider a set of pairs of points (P1,P2),(P3,P4),...,(P2k−1,P2k) . We'll call the set good if and only if:
- k>=2 .
- All Pi are distinct, and each Pi is an element of S .
- For any two pairs (P2i−1,P2i) and (P2j−1,P2j) , the circumcircles of triangles OP2i−1P2j−1 and OP2iP2j have a single common point, and the circumcircle of triangles OP2i−1P2j and OP2iP2j−1 have a single common point.
Calculate the number of good sets of pairs modulo 1000000007 (109+7) .
输入格式
The first line contains a single integer n (1<=n<=1000) — the number of points in S . Each of the next n lines contains four integers ai,bi,ci,di (0<=∣ai∣,∣ci∣<=50; 1<=bi,di<=50; (ai,ci)=(0,0)) . These integers represent a point .
No two points coincide.
输出格式
Print a single integer — the answer to the problem modulo 1000000007 (109+7) .
输入输出样例
输入#1
10 -46 46 0 36 0 20 -24 48 -50 50 -49 49 -20 50 8 40 -15 30 14 28 4 10 -4 5 6 15 8 10 -20 50 -3 15 4 34 -16 34 16 34 2 17
输出#1
2
输入#2
10 30 30 -26 26 0 15 -36 36 -28 28 -34 34 10 10 0 4 -8 20 40 50 9 45 12 30 6 15 7 35 36 45 -8 20 -16 34 -4 34 4 34 8 17
输出#2
4
输入#3
10 0 20 38 38 -30 30 -13 13 -11 11 16 16 30 30 0 37 6 30 -4 10 6 15 12 15 -4 5 -10 25 -16 20 4 10 8 17 -2 17 16 34 2 17
输出#3
10