CF327E.Axis Walking
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub lives at point 0 and Iahubina at point d .
Iahub has n positive integers a1 , a2 , ..., an . The sum of those numbers is d . Suppose p1 , p2 , ..., pn is a permutation of 1,2,...,n . Then, let b1=ap1 , b2=ap2 and so on. The array b is called a "route". There are n! different routes, one for each permutation p .
Iahub's travel schedule is: he walks b1 steps on Ox axis, then he makes a break in point b1 . Then, he walks b2 more steps on Ox axis and makes a break in point b1+b2 . Similarly, at j -th (1<=j<=n) time he walks bj more steps on Ox axis and makes a break in point b1+b2+...+bj .
Iahub is very superstitious and has k integers which give him bad luck. He calls a route "good" if he never makes a break in a point corresponding to one of those k numbers. For his own curiosity, answer how many good routes he can make, modulo 1000000007 ( 109+7 ).
输入格式
The first line contains an integer n ( 1<=n<=24 ). The following line contains n integers: a1,a2,...,an ( 1<=ai<=109 ).
The third line contains integer k ( 0<=k<=2 ). The fourth line contains k positive integers, representing the numbers that give Iahub bad luck. Each of these numbers does not exceed 109 .
输出格式
Output a single integer — the answer of Iahub's dilemma modulo 1000000007 ( 109+7 ).
输入输出样例
输入#1
3 2 3 5 2 5 7
输出#1
1
输入#2
3 2 2 2 2 1 3
输出#2
6
说明/提示
In the first case consider six possible orderings:
- [2, 3, 5]. Iahub will stop at position 2, 5 and 10. Among them, 5 is bad luck for him.
- [2, 5, 3]. Iahub will stop at position 2, 7 and 10. Among them, 7 is bad luck for him.
- [3, 2, 5]. He will stop at the unlucky 5.
- [3, 5, 2]. This is a valid ordering.
- [5, 2, 3]. He got unlucky twice (5 and 7).
- [5, 3, 2]. Iahub would reject, as it sends him to position 5.
In the second case, note that it is possible that two different ways have the identical set of stopping. In fact, all six possible ways have the same stops: [2, 4, 6], so there's no bad luck for Iahub.