A111.虫食算
提高+/省选-
NOIP提高组
通过率:0%
时间限制:1.00s
内存限制:128MB
题目描述
所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的字母。来看一个简单的例子:
43#9865#045
+ 8468#6633
44445509678
其中 #
号代表被虫子啃掉的数字。根据算式,我们很容易判断:第一行的两个数字分别是 5 和 3,第二行的数字是 5。
现在,我们对问题做两个限制:
首先,我们只考虑加法的虫食算。这里的加法是 n 进制加法,算式中三个数都有 n 位,允许有前导的 0。
其次,虫子把所有的数都啃光了,我们只知道哪些数字是相同的,我们将相同的数字用相同的字母表示,不同的数字用不同的字母表示。如果这个算式是 n 进制的,我们就取英文字母表的前 n 个大写字母来表示这个算式中的 0 到 n−1 这 n 个不同的数字:但是这 n 个字母并不一定顺序地代表 0 到 n−1。输入数据保证 n 个字母分别至少出现一次。
BADC
+CBDA
DCCC
上面的算式是一个4进制的算式。很显然,我们只要让 ABCD 分别代表 0123,便可以让这个式子成立了。你的任务是,对于给定的 n 进制加法算式,求出 n 个不同的字母分别代表的数字,使得该加法算式成立。输入数据保证有且仅有一组解。
输入格式
输入的第一行是一个整数 n,代表进制数。
第二到第四行,每行有一个由大写字母组成的字符串,分别代表两个加数以及和。这 3 个字符串左右两端都没有空格,从左到右依次代表从高位到低位,并且恰好有 n 位。
输出格式
输出一行 n 个用空格隔开的整数,分别代表 A,B,… 代表的数字。
输入输出样例
输入#1
5 ABCED BDACE EBBAA
输出#1
1 0 3 4 2
说明/提示
数据规模与约定
- 对于 30% 的数据,保证 n≤10;
- 对于 50% 的数据,保证 n≤15;
- 对于 100% 的数据,保证 1≤n≤26。