CF236B.Easy Number Challenge

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Let's denote d(n)d(n) as the number of divisors of a positive integer nn . You are given three integers aa , bb and cc . Your task is to calculate the following sum:

Find the sum modulo 10737418241073741824 (230)(2^{30}) .

输入格式

The first line contains three space-separated integers aa , bb and cc ( 1<=a,b,c<=1001<=a,b,c<=100 ).

输出格式

Print a single integer — the required sum modulo 10737418241073741824 (230)(2^{30}) .

输入输出样例

  • 输入#1

    2 2 2
    

    输出#1

    20
    
  • 输入#2

    5 6 7
    

    输出#2

    1520
    

说明/提示

For the first example.

  • d(111)=d(1)=1d(1·1·1)=d(1)=1 ;
  • d(112)=d(2)=2d(1·1·2)=d(2)=2 ;
  • d(121)=d(2)=2d(1·2·1)=d(2)=2 ;
  • d(122)=d(4)=3d(1·2·2)=d(4)=3 ;
  • d(211)=d(2)=2d(2·1·1)=d(2)=2 ;
  • d(212)=d(4)=3d(2·1·2)=d(4)=3 ;
  • d(221)=d(4)=3d(2·2·1)=d(4)=3 ;
  • d(222)=d(8)=4d(2·2·2)=d(8)=4 .

So the result is 1+2+2+3+2+3+3+4=201+2+2+3+2+3+3+4=20 .

首页