【正经题解】Emiya 家今天的饭
2024-02-20 16:59:02
发布于:浙江
34阅读
0回复
0点赞
可以看出,维护每列已选的节点复杂度太大,不太可行;因此很容易想到,先不考虑每列不超过一半的这个限制,求出总方案数,然后再减去考虑这个限制后不合法的方案数。现在问题就变成,求任意列选的节点超过所有选的节点的一半的方案数之和。
显然,在一个方案中,只可能有一列的节点超过所有选的节点的一半。因此可以想到枚举这个超过限制的列,然后对于这个列进行DP求解。
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int N=200,M=3000,P=998244353;//FFT(雾
int n,m;
ll ans=1;
ll cnt[N],w[N][M],f[N][M];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
scanf("%lld",&w[i][j]),cnt[i]=(cnt[i]+w[i][j])%P;
ans=(ans*(cnt[i]+1))%P;//计算全部答案
}
ans=(ans+P-1)%P;//减去全部不选的情况
for(int i=1;i<=m;i++)
{
memset(f,0,sizeof(f));
f[0][0]=1;//DP初值
for(int j=1;j<=n;j++)
for(int k=0;k<=2*(j-1);k++)
{
f[j][k]=(f[j][k]+f[j-1][k]*(cnt[j]-w[j][i]))%P;
f[j][k+1]=(f[j][k+1]+f[j-1][k])%P;
f[j][k+2]=(f[j][k+2]+f[j-1][k]*w[j][i])%P;
}
for(int j=n+1;j<=2*n;j++)
ans=(ans+P-f[n][j])%P;//减去当前枚举到的不合法方案
}
printf("%lld",ans);
return 0;
}
这里空空如也
有帮助,赞一个