等差数列计数|求因数个数
2024-06-11 00:04:33
发布于:浙江
题目链接:等差数列计数
题目描述
首先根据题目要求,给定一个等差数列的首项 和这个等差数列的末项 ,问符合这个形式的等差数列的数量。
例如,对于第一个 ,当 为 , 为 时,可行的等差数列方案数有四个,分别为以下所示:
思路分析
我们知道,等差数列的公差数量就是这个等差数列的可行方案数,即有多少种不同的公差方案,就可以构造出多少种不同的等差数列。因此通过分析题意,我们可以将问题更细致地转换为 已知等差数列的首项和尾项,求出这个等差数列公差的可行方案数。所以对于本题而言,我们只需要求出有多少个公差就可以了。
显然本题的就引刃而解了,我们只需要求出这个等差数列首项和末项的差的绝对值,即 。然后我们只需要求出 的因数个数即可。 的因数就是可行的因数方案(详细证明过程见下文)。
例如,当 为 , 为 时,。 的因数有四个,分别是 ,因此当这个等差数列首项为 ,末项为 时,可行的等差数列方案应为四个。
结论证明
通过等差数列公式,我们可以将等差数列的首项和末项通过公式联立起来,得到 ,其中 表示等差数列的项数, 表示等差数列的公差。
由于我们想要求解所有的因数个数,因此我们将通过移项的操作将 放到等式左边,将其余的量都放到等式右边。得到:
由于等差数列的性质, 必须为非负整数(等差数列的长度不能 )。或者根据等差数列的另一个性质,如果首项和末项的差为负数,那么公差也必须为负数,反之亦然。因此也可以推导出 必须是非负整数。
为了方便起见,我们将 看作为一个整体,另 。将该整体代入方程后即可得到 。为了使 是一个整数,因此 必须是 的倍数。因此我们只需要通过枚举上述方程,计算 所有的因数数量就可以得到本问题的解。
AC 代码
以下是本题的 AC 代码。需要注意的是,由于本题的数据量比较大,因此在判断因数的过程中需要优化算法(与判断质数类似),这样子算法就可以在 的时间内完成枚举,不至于超时:
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int t, a, b;
signed main(){
ios::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
cin >> t;
while(t--){
cin >> a >> b;
int change = abs(b - a), cnt = 0;
for (int i=1; i*i<=change; i++){
if (change % i == 0){
if (i*i != change) cnt += 2;
else cnt += 1;
}
}
cout << cnt << endl;
}
return 0;
}
这里空空如也
有帮助,赞一个