【正经题解】一元三次方程求解
2024-02-20 18:17:22
发布于:浙江
11阅读
0回复
0点赞
因为区间很大,所以可以二分。
三个答案都在[-100,100]范围内,两个根的差的绝对值>=1,保证了每一个大小为1的区间里至多有1个解,也就是说当区间的两个端点的函数值异号时区间内一定有一个解,同号时一定没有解。那么我们可以枚举互相不重叠的每一个长度为1的区间,在区间内进行二分查找。
#include<cstdio>
double a,b,c,d;
double fc(double x)
{
return a*x*x*x+b*x*x+c*x+d;
}
int main()
{
double l,r,m,x1,x2;
int s=0,i;
scanf("%lf%lf%lf%lf",&a,&b,&c,&d); //输入
for (i=-100;i<100;i++)
{
l=i;
r=i+1;
x1=fc(l);
x2=fc(r);
if(!x1)
{
printf("%.2lf ",l);
s++;
} //判断左端点,是零点直接输出。
//不能判断右端点,会重复。
if(x1*x2<0) //区间内有根。
{
while(r-l>=0.001) //二分控制精度。
{
m=(l+r)/2; //middle
if(fc(m)*fc(r)<=0)
l=m;
else
r=m; //计算中点处函数值缩小区间。
}
printf("%.2lf ",r);
//输出右端点。
s++;
}
if (s==3)
break;
//找到三个就退出大概会省一点时间
}
return 0;
}
这里空空如也
有帮助,赞一个